Quantum Locally Compact Metric Spaces
Abstract: We introduce the notion of a quantum locally compact metric space, which is the noncommutative analogue of a locally compact metric space, and generalize to the nonunital setting the notion of quantum metric spaces introduced by Rieffel. We then provide several examples of such structures, including the Moyal plane, as well as compact quantum metric spaces and locally compact metric spaces. This paper provides an answer to the question raised in the literature about the proper notion of a quantum metric space in the nonunital setup and offers important insights into noncommutative geometry for non compact quantum spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.