Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Control Design under Structured Model Information Limitation: A Cost-Biased Maximum-Likelihood Approach

Published 11 Aug 2012 in math.OC and cs.SY | (1208.2322v2)

Abstract: Networked control strategies based on limited information about the plant model usually results in worse closed-loop performance than optimal centralized control with full plant model information. Recently, this fact has been established by utilizing the concept of competitive ratio, which is defined as the worst case ratio of the cost of a control design with limited model information to the cost of the optimal control design with full model information. We show that an adaptive controller, inspired by a controller proposed by Campi and Kumar, with limited plant model information, asymptotically achieves the closed-loop performance of the optimal centralized controller with full model information for almost any plant. Therefore, there exists, at least, one adaptive control design strategy with limited plant model information that can achieve a competitive ratio equal to one. The plant model considered in the paper belongs to a compact set of stochastic linear time-invariant systems and the closed loop performance measure is the ergodic mean of a quadratic function of the state and control input. We illustrate the applicability of the results numerically on a vehicle platooning problem.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.