2000 character limit reached
On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties (1208.0815v3)
Published 3 Aug 2012 in math.DS and math.NT
Abstract: Let f : X --> X be a dominant rational map of a projective variety defined over a global field, let d_f be the dynamical degree of f, and let h_X be a Weil height on X relative to an ample divisor. We prove that h_X(fn(P)) << (d_f + e)n h_X(P), where the implied constant depends only on X, h_X, f, and e. As applications, we prove a fundamental inequality a_f(P) \le d_f for the upper arithmetic degree and we construct canonical heights for (nef) divisors. We conjecture that a_f(P) = d_f whenever the orbit of P is Zariski dense, and we describe some cases for which we can prove our conjecture.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.