Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Random Walk Based Model Incorporating Social Information for Recommendations

Published 3 Aug 2012 in cs.IR and cs.LG | (1208.0787v2)

Abstract: Collaborative filtering (CF) is one of the most popular approaches to build a recommendation system. In this paper, we propose a hybrid collaborative filtering model based on a Makovian random walk to address the data sparsity and cold start problems in recommendation systems. More precisely, we construct a directed graph whose nodes consist of items and users, together with item content, user profile and social network information. We incorporate user's ratings into edge settings in the graph model. The model provides personalized recommendations and predictions to individuals and groups. The proposed algorithms are evaluated on MovieLens and Epinions datasets. Experimental results show that the proposed methods perform well compared with other graph-based methods, especially in the cold start case.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.