Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wisdom of the Crowd: Incorporating Social Influence in Recommendation Models (1208.0782v2)

Published 3 Aug 2012 in cs.IR, cs.LG, cs.SI, and physics.soc-ph

Abstract: Recommendation systems have received considerable attention recently. However, most research has been focused on improving the performance of collaborative filtering (CF) techniques. Social networks, indispensably, provide us extra information on people's preferences, and should be considered and deployed to improve the quality of recommendations. In this paper, we propose two recommendation models, for individuals and for groups respectively, based on social contagion and social influence network theory. In the recommendation model for individuals, we improve the result of collaborative filtering prediction with social contagion outcome, which simulates the result of information cascade in the decision-making process. In the recommendation model for groups, we apply social influence network theory to take interpersonal influence into account to form a settled pattern of disagreement, and then aggregate opinions of group members. By introducing the concept of susceptibility and interpersonal influence, the settled rating results are flexible, and inclined to members whose ratings are "essential".

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shang Shang (9 papers)
  2. Pan Hui (155 papers)
  3. Sanjeev R. Kulkarni (32 papers)
  4. Paul W. Cuff (4 papers)
Citations (42)

Summary

We haven't generated a summary for this paper yet.