Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Landau problem with a general time-dependent electric field (1207.6494v1)

Published 27 Jul 2012 in quant-ph and cond-mat.other

Abstract: The time evolution is studied for the Landau problem with a general time dependent electric field ${\bf E}(t)$ in a plane perpendicular to the magnetic field. A general and explicit factorization of the time evolution operator is derived with each factor having a clear physical interpretation. The factorization consists of a geometric operator (path-ordered magnetic translation), a dynamical operator generated by the usual time-independent Landau Hamiltonian, and a nonadiabatic operator that determines the transition probabilities among the Landau levels. Since the path-ordered magnetic translation and the nonadiabatic operators are, up to completely determined numerical phase factors, just ordinary exponentials whose exponents are explicitly expressible in terms of the canonical variables, all of the factors in the factorization are explicitly constructed. The numerical phase factors are quantum mechanical in nature and could be of significance in interference experiments. The factorization is unique from the point of view of the quantum adiabatic theorem and provides a demonstration of how the quantum adiabatic theorem (incorporating the Berry phase phenomenon) is realized when infinitely degenerate energy levels are involved. Since the factorization separates the effect caused by the electric field into a geometric factor and a nonadiabatic factor, it makes possible to calculate the nonadiabatic transition probabilities near the adiabatic limit. A formula for matrix elements that determines the mixing of the Landau levels for a general, non-adiabatic evolution is also provided by the factorization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.