Papers
Topics
Authors
Recent
Search
2000 character limit reached

First-improvement vs. Best-improvement Local Optima Networks of NK Landscapes

Published 18 Jul 2012 in cs.NE and cs.AI | (1207.4455v1)

Abstract: This paper extends a recently proposed model for combinatorial landscapes: Local Optima Networks (LON), to incorporate a first-improvement (greedy-ascent) hill-climbing algorithm, instead of a best-improvement (steepest-ascent) one, for the definition and extraction of the basins of attraction of the landscape optima. A statistical analysis comparing best and first improvement network models for a set of NK landscapes, is presented and discussed. Our results suggest structural differences between the two models with respect to both the network connectivity, and the nature of the basins of attraction. The impact of these differences in the behavior of search heuristics based on first and best improvement local search is thoroughly discussed.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.