Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nugget Discovery with a Multi-objective Cultural Algorithm

Published 11 Jul 2012 in cs.NE | (1207.2630v1)

Abstract: Partial classification popularly known as nugget discovery comes under descriptive knowledge discovery. It involves mining rules for a target class of interest. Classification "If-Then" rules are the most sought out by decision makers since they are the most comprehensible form of knowledge mined by data mining techniques. The rules have certain properties namely the rule metrics which are used to evaluate them. Mining rules with user specified properties can be considered as a multi-objective optimization problem since the rules have to satisfy more than one property to be used by the user. Cultural algorithm (CA) with its knowledge sources have been used in solving many optimization problems. However research gap exists in using cultural algorithm for multi-objective optimization of rules. In the current study a multi-objective cultural algorithm is proposed for partial classification. Results of experiments on benchmark data sets reveal good performance.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.