Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Uniform estimates for positive solutions of semilinear elliptic equations and related Liouville and one-dimensional symmetry results (1207.2414v15)

Published 10 Jul 2012 in math.AP

Abstract: We consider a semilinear elliptic equation with Dirichlet boundary conditions in a smooth, possibly unbounded, domain. Under suitable assumptions, we deduce a condition on the size of the domain that implies the existence of a positive solution satisfying a uniform pointwise estimate. Here, uniform means that the estimate is independent of the domain. The main advantage of our approach is that it allows us to remove a restrictive monotonicity assumption that was imposed in the paper. In addition, we can remove a non-degeneracy condition that was assumed in the latter reference. Furthermore, we can generalize an old result, concerning semilinear elliptic nonlinear eigenvalue problems. Moreover, we study the boundary layer of global minimizers of the corresponding singular perturbation problem. For the above applications, our approach is based on a refinement of a result, concerning the behavior of global minimizers of the associated energy over large balls, subject to Dirichlet conditions. Combining this refinement with global bifurcation theory and the sliding method, we can prove uniform estimates for solutions away from their nodal set. Combining our approach with a-priori estimates that we obtain by blow-up, a doubling lemma, and known Liouville type theorems, we can give a new proof of a known Liouville type theorem without using boundary blow-up solutions. We can also provide an alternative proof, and a useful extension, of a Liouville theorem, involving the presence of an obstacle. Making use of the latter extension, we consider the singular perturbation problem with mixed boundary conditions. Moreover, we prove some new one-dimensional symmetry and rigidity properties of certain entire solutions to Allen-Cahn type equations, as well as in half spaces, convex cylindrical domains. In particular, we provide a new proof of Gibbons' conjecture in two dimensions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)