Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$d$-dimensional extension of a penalization method for Neumann or Robin boundary conditions: a boundary layer approach and numerical experiments (2407.12712v1)

Published 17 Jul 2024 in math.AP, cs.NA, and math.NA

Abstract: This paper studies the $d$-dimensional extension of a fictitious domain penalization technique that we previously proposed for Neumann or Robin boundary conditions. We apply Droniou's approach for non-coercive linear elliptic problems to obtain the existence and uniqueness of the solution of the penalized problem, and we derive a boundary layer approach to establish the convergence of the penalization method. The developed boundary layer approach is adapted from the one used for Dirichlet boundary conditions, but in contrast to the latter where coercivity enables a straightforward estimate of the remainders, we reduce the convergence of the penalization method to the existence of suitable supersolutions of a dual problem. These supersolutions are then constructed as approximate solutions of the dual problem using an additional formal boundary layer approach. The proposed approach results in an advection-dominated problem, requiring the use of appropriate numerical methods suitable for singular perturbation problems. Numerical experiments, using upwind finite differences, validate both the convergence rate and the boundary layer thickness, illuminating the theoretical results.

Summary

We haven't generated a summary for this paper yet.