Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

About the posterior distribution in hidden Markov models with unknown number of states (1207.2064v2)

Published 9 Jul 2012 in math.ST and stat.TH

Abstract: We consider finite state space stationary hidden Markov models (HMMs) in the situation where the number of hidden states is unknown. We provide a frequentist asymptotic evaluation of Bayesian analysis methods. Our main result gives posterior concentration rates for the marginal densities, that is for the density of a fixed number of consecutive observations. Using conditions on the prior, we are then able to define a consistent Bayesian estimator of the number of hidden states. It is known that the likelihood ratio test statistic for overfitted HMMs has a nonstandard behaviour and is unbounded. Our conditions on the prior may be seen as a way to penalize parameters to avoid this phenomenon. Inference of parameters is a much more difficult task than inference of marginal densities, we still provide a precise description of the situation when the observations are i.i.d. and we allow for $2$ possible hidden states.

Summary

We haven't generated a summary for this paper yet.