Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Estimators for Archimedean copulas in high dimensions (1207.1708v2)

Published 6 Jul 2012 in stat.CO, math.NA, and stat.OT

Abstract: The performance of known and new parametric estimators for Archimedean copulas is investigated, with special focus on large dimensions and numerical difficulties. In particular, method-of-moments-like estimators based on pairwise Kendall's tau, a multivariate extension of Blomqvist's beta, minimum distance estimators, the maximum-likelihood estimator, a simulated maximum-likelihood estimator, and a maximum-likelihood estimator based on the copula diagonal are studied. Their performance is compared in a large-scale simulation study both under known and unknown margins (pseudo-observations), in small and high dimensions, under small and large dependencies, various different Archimedean families and sample sizes. High dimensions up to one hundred are considered for the first time and computational problems arising from such large dimensions are addressed in detail. All methods are implemented in the open source \R{} package \pkg{copula} and can thus be easily accessed and studied.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.