Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas (1305.6526v3)

Published 28 May 2013 in stat.ML

Abstract: We study the adaptive estimation of copula correlation matrix $\Sigma$ for the semi-parametric elliptical copula model. In this context, the correlations are connected to Kendall's tau through a sine function transformation. Hence, a natural estimate for $\Sigma$ is the plug-in estimator $\hat{\Sigma}$ with Kendall's tau statistic. We first obtain a sharp bound on the operator norm of $\hat{\Sigma}-\Sigma$. Then we study a factor model of $\Sigma$, for which we propose a refined estimator $\widetilde{\Sigma}$ by fitting a low-rank matrix plus a diagonal matrix to $\hat{\Sigma}$ using least squares with a nuclear norm penalty on the low-rank matrix. The bound on the operator norm of $\hat{\Sigma}-\Sigma$ serves to scale the penalty term, and we obtain finite sample oracle inequalities for $\widetilde{\Sigma}$. We also consider an elementary factor copula model of $\Sigma$, for which we propose closed-form estimators. All of our estimation procedures are entirely data-driven.

Citations (47)

Summary

We haven't generated a summary for this paper yet.