Violation of the Robertson-Schrödinger uncertainty principle and non-commutative quantum mechanics (1207.0858v2)
Abstract: We show that a possible violation of the Robertson-Schr\"odinger uncertainty principle may signal the existence of a deformation of the Heisenberg-Weyl algebra. More precisely, we prove that any Gaussian in phase-space (even if it violates the Robertson-Schr\"odinger uncertainty principle) is always a quantum state of an appropriate non-commutative extension of quantum mechanics. Conversely, all canonical non-commutative extensions of quantum mechanics display states that violate the Robertson-Schr\"odinger uncertainty principle.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.