Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visualization of Collaborative Data (1206.6850v1)

Published 27 Jun 2012 in cs.GR, cs.AI, and cs.HC

Abstract: Collaborative data consist of ratings relating two distinct sets of objects: users and items. Much of the work with such data focuses on filtering: predicting unknown ratings for pairs of users and items. In this paper we focus on the problem of visualizing the information. Given all of the ratings, our task is to embed all of the users and items as points in the same Euclidean space. We would like to place users near items that they have rated (or would rate) high, and far away from those they would give a low rating. We pose this problem as a real-valued non-linear Bayesian network and employ Markov chain Monte Carlo and expectation maximization to find an embedding. We present a metric by which to judge the quality of a visualization and compare our results to local linear embedding and Eigentaste on three real-world datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.