Papers
Topics
Authors
Recent
Search
2000 character limit reached

Visualization of Collaborative Data

Published 27 Jun 2012 in cs.GR, cs.AI, and cs.HC | (1206.6850v1)

Abstract: Collaborative data consist of ratings relating two distinct sets of objects: users and items. Much of the work with such data focuses on filtering: predicting unknown ratings for pairs of users and items. In this paper we focus on the problem of visualizing the information. Given all of the ratings, our task is to embed all of the users and items as points in the same Euclidean space. We would like to place users near items that they have rated (or would rate) high, and far away from those they would give a low rating. We pose this problem as a real-valued non-linear Bayesian network and employ Markov chain Monte Carlo and expectation maximization to find an embedding. We present a metric by which to judge the quality of a visualization and compare our results to local linear embedding and Eigentaste on three real-world datasets.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.