Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Approach to Sparse Linear Discriminant Analysis (1206.6472v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: We present a novel approach to the formulation and the resolution of sparse Linear Discriminant Analysis (LDA). Our proposal, is based on penalized Optimal Scoring. It has an exact equivalence with penalized LDA, contrary to the multi-class approaches based on the regression of class indicator that have been proposed so far. Sparsity is obtained thanks to a group-Lasso penalty that selects the same features in all discriminant directions. Our experiments demonstrate that this approach generates extremely parsimonious models without compromising prediction performances. Besides prediction, the resulting sparse discriminant directions are also amenable to low-dimensional representations of data. Our algorithm is highly efficient for medium to large number of variables, and is thus particularly well suited to the analysis of gene expression data.

Citations (30)

Summary

We haven't generated a summary for this paper yet.