Papers
Topics
Authors
Recent
2000 character limit reached

An Efficient Approach to Sparse Linear Discriminant Analysis

Published 27 Jun 2012 in cs.LG and stat.ML | (1206.6472v1)

Abstract: We present a novel approach to the formulation and the resolution of sparse Linear Discriminant Analysis (LDA). Our proposal, is based on penalized Optimal Scoring. It has an exact equivalence with penalized LDA, contrary to the multi-class approaches based on the regression of class indicator that have been proposed so far. Sparsity is obtained thanks to a group-Lasso penalty that selects the same features in all discriminant directions. Our experiments demonstrate that this approach generates extremely parsimonious models without compromising prediction performances. Besides prediction, the resulting sparse discriminant directions are also amenable to low-dimensional representations of data. Our algorithm is highly efficient for medium to large number of variables, and is thus particularly well suited to the analysis of gene expression data.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.