Constraints on Superfluid Hydrodynamics from Equilibrium Partition Functions
Abstract: Following up on recent work in the context of ordinary fluids, we study the equilibrium partition function of a 3+1 dimensional superfluid on an arbitrary stationary background spacetime, and with arbitrary stationary background gauge fields, in the long wavelength expansion. We argue that this partition function is generated by a 3 dimensional Euclidean effective action for the massless Goldstone field. We parameterize the general form of this action at first order in the derivative expansion. We demonstrate that the constitutive relations of relativistic superfluid hydrodynamics are significantly constrained by the requirement of consistency with such an effective action. At first order in the derivative expansion we demonstrate that the resultant constraints on constitutive relations coincide precisely with the equalities between hydrodynamical transport coefficients recently derived from the second law of thermodynamics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.