Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geometry of Discrete Quantum Computing (1206.5823v2)

Published 25 Jun 2012 in quant-ph, cond-mat.other, math-ph, and math.MP

Abstract: Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2{n} infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields Fp2 (based on primes p congruent to 3 mod{4}) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space CP{2{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p+1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to DCP{2{n}-1}, the discrete analog of the complex projective space, which has p{2{n}-1} (p-1)\prod_{k=1}{n-1} (p{2{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field Fp2 have p{n} (p-1){n} unentangled states (the product of the tally for a single qubit) with purity 1, and they have p{n+1}(p-1)(p+1){n-1} maximally entangled states with purity zero.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.