Papers
Topics
Authors
Recent
2000 character limit reached

Community detection using spectral clustering on sparse geosocial data

Published 21 Jun 2012 in stat.AP, cs.SI, and physics.soc-ph | (1206.4969v3)

Abstract: In this article we identify social communities among gang members in the Hollenbeck policing district in Los Angeles, based on sparse observations of a combination of social interactions and geographic locations of the individuals. This information, coming from LAPD Field Interview cards, is used to construct a similarity graph for the individuals. We use spectral clustering to identify clusters in the graph, corresponding to communities in Hollenbeck, and compare these with the LAPD's knowledge of the individuals' gang membership. We discuss different ways of encoding the geosocial information using a graph structure and the influence on the resulting clusterings. Finally we analyze the robustness of this technique with respect to noisy and incomplete data, thereby providing suggestions about the relative importance of quantity versus quality of collected data.

Citations (89)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.