2000 character limit reached
A Hybrid Algorithm for Convex Semidefinite Optimization (1206.4608v1)
Published 18 Jun 2012 in cs.LG, cs.DS, cs.NA, and stat.ML
Abstract: We present a hybrid algorithm for optimizing a convex, smooth function over the cone of positive semidefinite matrices. Our algorithm converges to the global optimal solution and can be used to solve general large-scale semidefinite programs and hence can be readily applied to a variety of machine learning problems. We show experimental results on three machine learning problems (matrix completion, metric learning, and sparse PCA) . Our approach outperforms state-of-the-art algorithms.