Papers
Topics
Authors
Recent
2000 character limit reached

An introduction to d-manifolds and derived differential geometry (1206.4207v3)

Published 19 Jun 2012 in math.DG, math.AG, and math.SG

Abstract: This is a survey of the author's book "D-manifolds and d-orbifolds: a theory of derived differential geometry", available at http://people.maths.ox.ac.uk/~joyce/dmanifolds.html We introduce a 2-category dMan of "d-manifolds", new geometric objects which are 'derived' smooth manifolds, in the sense of the 'derived algebraic geometry' of Toen and Lurie. They are a 2-category truncation of the 'derived manifolds' of Spivak (see arXiv:0810.5174, arXiv:1212.1153). The category of manifolds Man embeds in dMan as a full subcategory. We also define 2-categories dManb,dManc of "d-manifolds with boundary" and "d-manifolds with corners", and orbifold versions of these dOrb,dOrbb,dOrbc, "d-orbifolds". For brevity, this survey concentrates mostly on d-manifolds without boundary. A longer and more detailed summary of the book is given in arXiv:1208.4948. Much of differential geometry extends very nicely to d-manifolds and d-orbifolds -- immersions, submersions, submanifolds, transverse fibre products, orientations, etc. Compact oriented d-manifolds and d-orbifolds have virtual classes. There are truncation functors to d-manifolds and d-orbifolds from essentially every geometric structures on moduli spaces used in enumerative invariant problems in differential geometry or complex algebraic geometry, including Fredholm sections of Banach vector bundles over Banach manifolds, the "Kuranishi spaces" of Fukaya, Oh, Ohta and Ono and the "polyfolds" of Hofer, Wysocki and Zehnder in symplectic geometry, and C-schemes with perfect obstruction theories in algebraic geometry. Thus, results in the literature imply that many important classes of moduli spaces are d-manifolds or d-orbifolds, including moduli spaces of J-holomorphic curves in symplectic geometry. D-manifolds and d-orbifolds will have applications in symplectic geometry, and elsewhere.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.