Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explanation Trees for Causal Bayesian Networks (1206.3276v1)

Published 13 Jun 2012 in cs.AI

Abstract: Bayesian networks can be used to extract explanations about the observed state of a subset of variables. In this paper, we explicate the desiderata of an explanation and confront them with the concept of explanation proposed by existing methods. The necessity of taking into account causal approaches when a causal graph is available is discussed. We then introduce causal explanation trees, based on the construction of explanation trees using the measure of causal information ow (Ay and Polani, 2006). This approach is compared to several other methods on known networks.

Citations (39)

Summary

We haven't generated a summary for this paper yet.