Papers
Topics
Authors
Recent
Search
2000 character limit reached

Architecture for Automated Tagging and Clustering of Song Files According to Mood

Published 12 Jun 2012 in cs.IR and cs.MM | (1206.2484v1)

Abstract: Music is one of the basic human needs for recreation and entertainment. As song files are digitalized now a days, and digital libraries are expanding continuously, which makes it difficult to recall a song. Thus need of a new classification system other than genre is very obvious and mood based classification system serves the purpose very well. In this paper we will present a well-defined architecture to classify songs into different mood-based categories, using audio content analysis, affective value of song lyrics to map a song onto a psychological-based emotion space and information from online sources. In audio content analysis we will use music features such as intensity, timbre and rhythm including their subfeatures to map music in a 2-Dimensional emotional space. In lyric based classification 1-Dimensional emotional space is used. Both the results are merged onto a 2-Dimensional emotional space, which will classify song into a particular mood category. Finally clusters of mood based song files are formed and arranged according to data acquired from various Internet sources.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.