Papers
Topics
Authors
Recent
2000 character limit reached

Changepoint Detection over Graphs with the Spectral Scan Statistic

Published 4 Jun 2012 in math.ST, cs.IT, math.IT, stat.ML, and stat.TH | (1206.0773v1)

Abstract: We consider the change-point detection problem of deciding, based on noisy measurements, whether an unknown signal over a given graph is constant or is instead piecewise constant over two connected induced subgraphs of relatively low cut size. We analyze the corresponding generalized likelihood ratio (GLR) statistics and relate it to the problem of finding a sparsest cut in a graph. We develop a tractable relaxation of the GLR statistic based on the combinatorial Laplacian of the graph, which we call the spectral scan statistic, and analyze its properties. We show how its performance as a testing procedure depends directly on the spectrum of the graph, and use this result to explicitly derive its asymptotic properties on few significant graph topologies. Finally, we demonstrate both theoretically and by simulations that the spectral scan statistic can outperform naive testing procedures based on edge thresholding and $\chi2$ testing.

Citations (71)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.