2000 character limit reached
Topological graph clustering with thin position
Published 4 Jun 2012 in math.GT, cs.LG, and stat.ML | (1206.0771v1)
Abstract: A clustering algorithm partitions a set of data points into smaller sets (clusters) such that each subset is more tightly packed than the whole. Many approaches to clustering translate the vector data into a graph with edges reflecting a distance or similarity metric on the points, then look for highly connected subgraphs. We introduce such an algorithm based on ideas borrowed from the topological notion of thin position for knots and 3-dimensional manifolds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.