Papers
Topics
Authors
Recent
2000 character limit reached

Central limit theorem for partial linear eigenvalue statistics of Wigner matrices (1206.0508v1)

Published 4 Jun 2012 in math.PR, math-ph, and math.MP

Abstract: In this paper, we study the complex Wigner matrices $M_n=\frac{1}{\sqrt{n}}W_n$ whose eigenvalues are typically in the interval $[-2,2]$. Let $\lambda_1\leq \lambda_2...\leq\lambda_n$ be the ordered eigenvalues of $M_n$. Under the assumption of four matching moments with the Gaussian Unitary Ensemble(GUE), for test function $f$ 4-times continuously differentiable on an open interval including $[-2,2]$, we establish central limit theorems for two types of partial linear statistics of the eigenvalues. The first type is defined with a threshold $u$ in the bulk of the Wigner semicircle law as $\mathcal{A}n[f; u]=\sum{l=1}nf(\lambda_l)\mathbf{1}_{{\lambda_l\leq u}}$. And the second one is $\mathcal{B}n[f; k]=\sum{l=1}{k}f(\lambda_l)$ with positive integer $k=k_n$ such that $k/n\rightarrow y\in (0,1)$ as $n$ tends to infinity. Moreover, we derive a weak convergence result for a partial sum process constructed from $\mathcal{B}_n[f; \lfloor nt\rfloor]$.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.