Papers
Topics
Authors
Recent
Search
2000 character limit reached

Understanding differential equations through diffusion point of view: non-symmetric discrete equations

Published 27 Apr 2012 in cs.NA, cs.DM, math.AP, math.CA, and math.NA | (1204.6249v1)

Abstract: In this paper, we propose a new adaptation of the D-iteration algorithm to numerically solve the differential equations. This problem can be reinterpreted in 2D or 3D (or higher dimensions) as a limit of a diffusion process where the boundary or initial conditions are replaced by fluid catalysts. It has been shown that pre-computing the diffusion process for an elementary catalyst case as a fundamental block of a class of differential equations, the computation efficiency can be greatly improved. Here, we explain how the diffusion point of view can be applied to decompose the fluid diffusion process per direction and how to handle non-symmetric discrete equations. The method can be applied on the class of problems that can be addressed by the Gauss-Seidel iteration, based on the linear approximation of the differential equations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.