Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Budgeted Influence Maximization in Social Networks (1204.4491v3)

Published 19 Apr 2012 in cs.SI and physics.soc-ph

Abstract: Given a budget and arbitrary cost for selecting each node, the budgeted influence maximization (BIM) problem concerns selecting a set of seed nodes to disseminate some information that maximizes the total number of nodes influenced (termed as influence spread) in social networks at a total cost no more than the budget. Our proposed seed selection algorithm for the BIM problem guarantees an approximation ratio of (1 - 1/sqrt(e)). The seed selection algorithm needs to calculate the influence spread of candidate seed sets, which is known to be #P-complex. Identifying the linkage between the computation of marginal probabilities in Bayesian networks and the influence spread, we devise efficient heuristic algorithms for the latter problem. Experiments using both large-scale social networks and synthetically generated networks demonstrate superior performance of the proposed algorithm with moderate computation costs. Moreover, synthetic datasets allow us to vary the network parameters and gain important insights on the impact of graph structures on the performance of different algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Huy Nguyen (78 papers)
  2. Rong Zheng (41 papers)
Citations (135)

Summary

We haven't generated a summary for this paper yet.