Papers
Topics
Authors
Recent
Search
2000 character limit reached

Near-Optimal Algorithms for Online Matrix Prediction

Published 31 Mar 2012 in cs.LG and cs.DS | (1204.0136v1)

Abstract: In several online prediction problems of recent interest the comparison class is composed of matrices with bounded entries. For example, in the online max-cut problem, the comparison class is matrices which represent cuts of a given graph and in online gambling the comparison class is matrices which represent permutations over n teams. Another important example is online collaborative filtering in which a widely used comparison class is the set of matrices with a small trace norm. In this paper we isolate a property of matrices, which we call (beta,tau)-decomposability, and derive an efficient online learning algorithm, that enjoys a regret bound of O*(sqrt(beta tau T)) for all problems in which the comparison class is composed of (beta,tau)-decomposable matrices. By analyzing the decomposability of cut matrices, triangular matrices, and low trace-norm matrices, we derive near optimal regret bounds for online max-cut, online gambling, and online collaborative filtering. In particular, this resolves (in the affirmative) an open problem posed by Abernethy (2010); Kleinberg et al (2010). Finally, we derive lower bounds for the three problems and show that our upper bounds are optimal up to logarithmic factors. In particular, our lower bound for the online collaborative filtering problem resolves another open problem posed by Shamir and Srebro (2011).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.