Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Negative-energy PT-symmetric Hamiltonians (1203.6590v1)

Published 29 Mar 2012 in hep-th, math-ph, math.MP, and quant-ph

Abstract: The non-Hermitian PT-symmetric quantum-mechanical Hamiltonian $H=p2+x2(ix)\epsilon$ has real, positive, and discrete eigenvalues for all $\epsilon\geq 0$. These eigenvalues are analytic continuations of the harmonic-oscillator eigenvalues $E_n=2n+1$ (n=0, 1, 2, 3, ...) at $\epsilon=0$. However, the harmonic oscillator also has negative eigenvalues $E_n=-2n-1$ (n=0, 1, 2, 3, ...), and one may ask whether it is equally possible to continue analytically from these eigenvalues. It is shown in this paper that for appropriate PT-symmetric boundary conditions the Hamiltonian $H=p2+x2(ix)\epsilon$ also has real and {\it negative} discrete eigenvalues. The negative eigenvalues fall into classes labeled by the integer N (N=1, 2, 3, ...). For the Nth class of eigenvalues, $\epsilon$ lies in the range $(4N-6)/3<\epsilon<4N-2$. At the low and high ends of this range, the eigenvalues are all infinite. At the special intermediate value $\epsilon=2N-2$ the eigenvalues are the negatives of those of the conventional Hermitian Hamiltonian $H=p2+x{2N}$. However, when $\epsilon\neq 2N-2$, there are infinitely many complex eigenvalues. Thus, while the positive-spectrum sector of the Hamiltonian $H=p2+x2(ix)\epsilon$ has an unbroken PT symmetry (the eigenvalues are all real), the negative-spectrum sector of $H=p2+x2(ix)\epsilon$ has a broken PT symmetry (only some of the eigenvalues are real).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.