Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Marginality: a numerical mapping for enhanced treatment of nominal and hierarchical attributes (1202.6009v1)

Published 27 Feb 2012 in cs.AI

Abstract: The purpose of statistical disclosure control (SDC) of microdata, a.k.a. data anonymization or privacy-preserving data mining, is to publish data sets containing the answers of individual respondents in such a way that the respondents corresponding to the released records cannot be re-identified and the released data are analytically useful. SDC methods are either based on masking the original data, generating synthetic versions of them or creating hybrid versions by combining original and synthetic data. The choice of SDC methods for categorical data, especially nominal data, is much smaller than the choice of methods for numerical data. We mitigate this problem by introducing a numerical mapping for hierarchical nominal data which allows computing means, variances and covariances on them.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Josep Domingo-Ferrer (41 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.