Papers
Topics
Authors
Recent
2000 character limit reached

A Logical Characterization of Constraint-Based Causal Discovery

Published 14 Feb 2012 in cs.AI | (1202.3711v1)

Abstract: We present a novel approach to constraint-based causal discovery, that takes the form of straightforward logical inference, applied to a list of simple, logical statements about causal relations that are derived directly from observed (in)dependencies. It is both sound and complete, in the sense that all invariant features of the corresponding partial ancestral graph (PAG) are identified, even in the presence of latent variables and selection bias. The approach shows that every identifiable causal relation corresponds to one of just two fundamental forms. More importantly, as the basic building blocks of the method do not rely on the detailed (graphical) structure of the corresponding PAG, it opens up a range of new opportunities, including more robust inference, detailed accountability, and application to large models.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.