Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Worst-Case Additive Noise in Wireless Networks (1202.2687v4)

Published 13 Feb 2012 in cs.IT and math.IT

Abstract: A classical result in Information Theory states that the Gaussian noise is the worst-case additive noise in point-to-point channels, meaning that, for a fixed noise variance, the Gaussian noise minimizes the capacity of an additive noise channel. In this paper, we significantly generalize this result and show that the Gaussian noise is also the worst-case additive noise in wireless networks with additive noises that are independent from the transmit signals. More specifically, we show that, if we fix the noise variance at each node, then the capacity region with Gaussian noises is a subset of the capacity region with any other set of noise distributions. We prove this result by showing that a coding scheme that achieves a given set of rates on a network with Gaussian additive noises can be used to construct a coding scheme that achieves the same set of rates on a network that has the same topology and traffic demands, but with non-Gaussian additive noises.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.