2000 character limit reached
A linear-time algorithm for finding a complete graph minor in a dense graph
Published 13 Feb 2012 in math.CO, cs.DM, and cs.DS | (1202.2624v2)
Abstract: Let g(t) be the minimum number such that every graph G with average degree d(G) \geq g(t) contains a K_{t}-minor. Such a function is known to exist, as originally shown by Mader. Kostochka and Thomason independently proved that g(t) \in \Theta(t*sqrt{log t}). This article shows that for all fixed \epsilon > 0 and fixed sufficiently large t \geq t(\epsilon), if d(G) \geq (2+\epsilon)g(t) then we can find this K_{t}-minor in linear time. This improves a previous result by Reed and Wood who gave a linear-time algorithm when d(G) \geq 2{t-2}.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.