Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic trees for streaming and massive data contexts (1201.5568v1)

Published 26 Jan 2012 in stat.ME and stat.ML

Abstract: Data collection at a massive scale is becoming ubiquitous in a wide variety of settings, from vast offline databases to streaming real-time information. Learning algorithms deployed in such contexts must rely on single-pass inference, where the data history is never revisited. In streaming contexts, learning must also be temporally adaptive to remain up-to-date against unforeseen changes in the data generating mechanism. Although rapidly growing, the online Bayesian inference literature remains challenged by massive data and transient, evolving data streams. Non-parametric modelling techniques can prove particularly ill-suited, as the complexity of the model is allowed to increase with the sample size. In this work, we take steps to overcome these challenges by porting standard streaming techniques, like data discarding and downweighting, into a fully Bayesian framework via the use of informative priors and active learning heuristics. We showcase our methods by augmenting a modern non-parametric modelling framework, dynamic trees, and illustrate its performance on a number of practical examples. The end product is a powerful streaming regression and classification tool, whose performance compares favourably to the state-of-the-art.

Citations (7)

Summary

We haven't generated a summary for this paper yet.