Fourier coefficients of three-dimensional vector-valued modular forms (1201.5165v2)
Abstract: A thorough analysis is made of the Fourier coefficients for vector-valued modular forms associated to three-dimensional irreducible representations of the modular group. In particular, the following statement is verified for all but a finite number of equivalence classes: if a vector-valued modular form associated to such a representation has rational Fourier coefficients, then these coefficients have "unbounded denominators", i.e. there is a prime number p, depending on the representation, which occurs to an arbitrarily high power in the denominators of the coefficients. This provides a verification in the three-dimensional setting of a generalization of a long-standing conjecture about noncongruence modular forms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.