Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Data Storage in Large-Scale Sensor Networks Based on LT Codes (1201.4479v1)

Published 21 Jan 2012 in cs.IT, cs.DB, and math.IT

Abstract: This paper proposes an algorithm for increasing data persistency in large-scale sensor networks. In the scenario considered here, k out of n nodes sense the phenomenon and produced ? information packets. Due to usually hazardous environment and limited resources, e.g. energy, sensors in the network are vulnerable. Also due to the large size of the network, gathering information from a few central hopes is not feasible. Flooding is not a desired option either due to limited memory of each node. Therefore the best approach to increase data persistency is propagating data throughout the network by random walks. The algorithm proposed here is based on distributed LT (Luby Transform) codes and it benefits from the low complexity of encoding and decoding of LT codes. In previous algorithms the essential global information (e.g., n and k) are estimated based on graph statistics, which requires excessive transmissions. In our proposed algorithm, these values are obtained without additional transmissions. Also the mixing time of random walk is enhanced by proposing a new scheme for generating the probabilistic forwarding table of random walk. The proposed method uses only local information and it is scalable to any network topology. By simulations the improved performance of developed algorithm compared to previous ones has been verified.

Citations (1)

Summary

We haven't generated a summary for this paper yet.