Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Expansion for Universal Quantifiers (1201.1101v1)

Published 5 Jan 2012 in cs.PL

Abstract: Expansion is an operation on typings (i.e., pairs of typing environments and result types) defined originally in type systems for the lambda-calculus with intersection types in order to obtain principal (i.e., most informative, strongest) typings. In a type inference scenario, expansion allows postponing choices for whether and how to use non-syntax-driven typing rules (e.g., intersection introduction) until enough information has been gathered to make the right decision. Furthermore, these choices can be equivalent to inserting uses of such typing rules at deeply nested positions in a typing derivation, without needing to actually inspect or modify (or even have) the typing derivation. Expansion has in recent years become simpler due to the use of expansion variables (e.g., in System E). This paper extends expansion and expansion variables to systems with forall-quantifiers. We present System Fs, an extension of System F with expansion, and prove its main properties. This system turns type inference into a constraint solving problem; this could be helpful to design a modular type inference algorithm for System F types in the future.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.