Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quasi-actions and rough Cayley graphs for locally compact groups

Published 29 Dec 2011 in math.GR | (1112.6415v2)

Abstract: We define the notion of rough Cayley graph for compactly generated locally compact groups in terms of quasi-actions. We construct such a graph for any compactly generated locally compact group using quasi-lattices and show uniqueness up to quasi-isometry. A class of examples is given by the Cayley graphs of cocompact lattices in compactly generated groups. As an application, we show that a compactly generated group has polynomial growth if and only if its rough Cayley graph has polynomial growth (same for intermediate and exponential growth). Moreover, a unimodular compactly generated group is amenable if and only if its rough Cayley graph is amenable as a metric space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.