Factorization of Second-order strictly hyperbolic operators with non-smooth coefficients and microlocal diagonalization (1112.5615v1)
Abstract: We study strictly hyperbolic partial differential operators of second order with non-smooth coefficients. After modelling them as semiclassical Colombeau equations of log-type we provide a factorization procedure on some time-space-frequency domain. As a result the operator is written as a product of two semiclassical first-order constituents of log-type which approximates the modelled operator microlocally at infinite points. We then present a diagonalization method so that microlocally at infinity the governing equation is equal to a coupled system of two semiclassical first-order strictly hyperbolic pseudodifferential equations. Furthermore we compute the coupling effect. We close with some remarks on the results and future directions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.