Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Constructive Approach to Reduced-Form Auctions with Applications to Multi-Item Mechanism Design

Published 20 Dec 2011 in cs.GT | (1112.4572v2)

Abstract: We provide a constructive proof of Border's theorem [Bor91, HR15a] and its generalization to reduced-form auctions with asymmetric bidders [Bor07, MV10, CKM13]. Given a reduced form, we identify a subset of Border constraints that are necessary and sufficient to determine its feasibility. Importantly, the number of these constraints is linear in the total number of bidder types. In addition, we provide a characterization result showing that every feasible reduced form can be induced by an ex-post allocation rule that is a distribution over ironings of the same total ordering of the union of all bidders' types. We show how to leverage our results for single-item reduced forms to design auctions with heterogeneous items and asymmetric bidders with valuations that are additive over items. Appealing to our constructive Border's theorem, we obtain polynomial-time algorithms for computing the revenue-optimal auction. Appealing to our characterization of feasible reduced forms, we characterize feasible multi-item allocation rules.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.