Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sarkozy's Theorem for P-Intersective Polynomials

Published 28 Nov 2011 in math.CA, math.CO, and math.NT | (1111.6559v5)

Abstract: We define a necessary and sufficient condition on a polynomial $h\in \mathbb{Z}[x]$ to guarantee that every set of natural numbers of positive upper density contains a nonzero difference of the form $h(p)$ for some prime $p$. Moreover, we establish a quantitative estimate on the size of the largest subset of ${1,2,\dots,N}$ which lacks the desired arithmetic structure, showing that if deg$(h)=k$, then the density of such a set is at most a constant times $(\log N){-c}$ for any $c<1/(2k-2)$. We also discuss how an improved version of this result for $k=2$ and a relative version in the primes can be obtained with some additional known methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.