Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Joint Network-Source Coding for Multiple Terminals with Side Information (1111.5735v1)

Published 24 Nov 2011 in cs.IT and math.IT

Abstract: Consider the problem of source coding in networks with multiple receiving terminals, each having access to some kind of side information. In this case, standard coding techniques are either prohibitively complex to decode, or require network-source coding separation, resulting in sub-optimal transmission rates. To alleviate this problem, we offer a joint network-source coding scheme based on matrix sparsification at the code design phase, which allows the terminals to use an efficient decoding procedure (syndrome decoding using LDPC), despite the network coding throughout the network. Via a novel relation between matrix sparsification and rate-distortion theory, we give lower and upper bounds on the best achievable sparsification performance. These bounds allow us to analyze our scheme, and, in particular, show that in the limit where all receivers have comparable side information (in terms of conditional entropy), or, equivalently, have weak side information, a vanishing density can be achieved. As a result, efficient decoding is possible at all terminals simultaneously. Simulation results motivate the use of this scheme at non-limiting rates as well.

Citations (1)

Summary

We haven't generated a summary for this paper yet.