Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Adaptive confidence sets in L^2 (1111.5568v3)

Published 23 Nov 2011 in math.ST and stat.TH

Abstract: The problem of constructing confidence sets that are adaptive in L2-loss over a continuous scale of Sobolev classes of probability densities is considered. Adaptation holds, where possible, with respect to both the radius of the Sobolev ball and its smoothness degree, and over maximal parameter spaces for which adaptation is possible. Two key regimes of parameter constellations are identified: one where full adaptation is possible, and one where adaptation requires critical regions be removed. Techniques used to derive these results include a general nonparametric minimax test for infinite-dimensional null- and alternative hypotheses, and new lower bounds for L2-adaptive confidence sets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube