Papers
Topics
Authors
Recent
2000 character limit reached

Semiclassical approach to universality in quantum chaotic transport (1111.5179v2)

Published 22 Nov 2011 in nlin.CD

Abstract: The statistics of quantum transport through chaotic cavities with two leads is encoded in transport moments $M_m={\rm Tr}[(t\dag t)m]$, where $t$ is the transmission matrix, which have a known universal expression for systems without time-reversal symmetry. We present a semiclassical derivation of this universality, based on action correlations that exist between sets of long scattering trajectories. Our semiclassical formula for $M_m$ holds for all values of $m$ and arbitrary number of open channels. This is achieved by mapping the problem into two independent combinatorial problems, one involving pairs of set partitions and the other involving factorizations in the symmetric group.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube