Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the rank function of a differential poset (1111.4371v2)

Published 18 Nov 2011 in math.CO and math.AC

Abstract: We study $r$-differential posets, a class of combinatorial objects introduced in 1988 by the first author, which gathers together a number of remarkable combinatorial and algebraic properties, and generalizes important examples of ranked posets, including the Young lattice. We first provide a simple bijection relating differential posets to a certain class of hypergraphs, including all finite projective planes, which are shown to be naturally embedded in the initial ranks of some differential poset. As a byproduct, we prove the existence, if and only if $r\geq 6$, of $r$-differential posets nonisomorphic in any two consecutive ranks but having the same rank function. We also show that the Interval Property, conjectured by the second author and collaborators for several sequences of interest in combinatorics and combinatorial algebra, in general fails for differential posets. In the second part, we prove that the rank function $p_n$ of any arbitrary $r$-differential poset has nonpolynomial growth; namely, $p_n\gg nae{2\sqrt{rn}},$ a bound very close to the Hardy-Ramanujan asymptotic formula that holds in the special case of Young's lattice. We conclude by posing several open questions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.