Papers
Topics
Authors
Recent
2000 character limit reached

Guaranteed Conditional Performance of Control Charts via Bootstrap Methods

Published 17 Nov 2011 in stat.ME, math.ST, and stat.TH | (1111.4180v1)

Abstract: To use control charts in practice, the in-control state usually has to be estimated. This estimation has a detrimental effect on the performance of control charts, which is often measured for example by the false alarm probability or the average run length. We suggest an adjustment of the monitoring schemes to overcome these problems. It guarantees, with a certain probability, a conditional performance given the estimated in-control state. The suggested method is based on bootstrapping the data used to estimate the in-control state. The method applies to different types of control charts, and also works with charts based on regression models, survival models, etc. If a nonparametric bootstrap is used, the method is robust to model errors. We show large sample properties of the adjustment. The usefulness of our approach is demonstrated through simulation studies.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.