Papers
Topics
Authors
Recent
Search
2000 character limit reached

Using Contextual Information as Virtual Items on Top-N Recommender Systems

Published 12 Nov 2011 in cs.LG and cs.IR | (1111.2948v2)

Abstract: Traditionally, recommender systems for the Web deal with applications that have two dimensions, users and items. Based on access logs that relate these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a method to complement the information in the access logs with contextual information without changing the recommendation algorithm. The method consists in representing context as virtual items. We empirically test this method with two top-N recommender systems, an item-based collaborative filtering technique and association rules, on three data sets. The results show that our method is able to take advantage of the context (new dimensions) when it is informative.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.