Papers
Topics
Authors
Recent
2000 character limit reached

Maximal rigid objects as noncrossing bipartite graphs

Published 9 Nov 2011 in math.RT and math.CO | (1111.2306v1)

Abstract: Let Q be a Dynkin quiver of type A. The bounded derived category of the path algebra of Q has an autoequivalence given by the composition of the Auslander-Reiten translate and the square of the shift functor. We classify the maximal rigid objects in the corresponding orbit category C(Q), in terms of bipartite noncrossing graphs (with loops) in a circle. We also describe the endomorphism algebras of the maximal rigid objects, and we prove that a certain class of these algebras are iterated tilted algebras of type A.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.