Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Grounding Strategies for Tagbased Recommender Systems (1111.1570v1)

Published 7 Nov 2011 in cs.IR and cs.SI

Abstract: Recommender systems usually operate on similarities between recommended items or users. Tag based recommender systems utilize similarities on tags. The tags are however mostly free user entered phrases. Therefore, similarities computed without their semantic groundings might lead to less relevant recommendations. In this paper, we study a semantic grounding used for tag similarity calculus. We show a comprehensive analysis of semantic grounding given by 20 ontologies from different domains. The study besides other things reveals that currently available OWL ontologies are very narrow and the percentage of the similarity expansions is rather small. WordNet scores slightly better as it is broader but not much as it does not support several semantic relationships. Furthermore, the study reveals that even with such number of expansions, the recommendations change considerably.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Frederico Durao (3 papers)
  2. Peter Dolog (8 papers)

Summary

We haven't generated a summary for this paper yet.